- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Fernández, Israel (3)
-
Martín, Nazario (3)
-
Wei, Zheng (3)
-
Zhu, Yikun (3)
-
Petrukhina, Marina A. (2)
-
Zhou, Zheng (2)
-
Crassous, Jeanne (1)
-
Evans, Paul J. (1)
-
Fernández-García, Jesús M. (1)
-
Fernández‐García, Jesús M (1)
-
Fernández‐García, Jesús M. (1)
-
Lión‐Villar, Juan (1)
-
Petrukhina, Marina A (1)
-
Rodríguez, Rafael (1)
-
Torchon, Herdya S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The chemical reduction of a bilayer spironanographene,spiro‐NG(C137H120), with Na and K metals in the presence of [2.2.2]cryptand to yield [Na+(2.2.2‐cryptand)](C137H121−) (1) and [K+(2.2.2‐cryptand)](C137H121−) (2), respectively, is reported. X‐ray crystallography reveals the formation of a new “naked” anion (spiro‐NGH−), in which spirocyclic ring cleavage and subsequent hydrogenation have occurred. Density Functional Theory (DFT) calculations suggest that the generation of the radical anion of the parent nanographene (spiro‐NG•−), upon electron acceptance from Na and K metals, induces the cleavage of the strained spirobifluorene core. The resulting spin density localizes on a particular carbon atom, previously attached to the spiranic sp3carbon atom, facilitating a site‐specific hydrogenation to afford (spiro‐NGH−). The electrostatic potential map of this anion reveals electron density concentrated at the five‐membered ring of the readily formed indenyl fragment, thus enhancing the aromaticity of the system. Furthermore, nuclear magnetic resonance (NMR) and UV–vis absorption spectroscopy experiments allowed to follow the in situ reduction and hydrogenation processes in detail.more » « lessFree, publicly-accessible full text available August 11, 2026
-
Zhou, Zheng; Zhu, Yikun; Fernández-García, Jesús M.; Wei, Zheng; Fernández, Israel; Petrukhina, Marina A.; Martín, Nazario (, Chemical Communications)The chemical reduction of a corannulene-based molecular nanographene, C 76 H 64 (1), with Na metal in the presence of 18-crown-6 afforded the doubly-reduced state of 1. This reduction provokes a distortion of the helicene core and has a significant impact on the aromaticity of the system.more » « less
-
Zhou, Zheng; Fernández‐García, Jesús M.; Zhu, Yikun; Evans, Paul J.; Rodríguez, Rafael; Crassous, Jeanne; Wei, Zheng; Fernández, Israel; Petrukhina, Marina A.; Martín, Nazario (, Angewandte Chemie International Edition)Abstract The chemical reduction of π‐conjugated bilayer nanographene1(C138H120) with K and Rb in the presence of 18‐crown‐6 affords [K+(18‐crown‐6)(THF)2][{K+(18‐crown‐6)}2(THF)0.5][C138H1223−] (2) and [Rb+(18‐crown‐6)2][{Rb+(18‐crown‐6)}2(C138H1223−)] (3). Whereas K+cations are fully solvent‐separated from the trianionic core thus affording a “naked”1.3−anion, Rb+cations are coordinated to the negatively charged layers of1.3−. According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site‐specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction‐induced site‐specific hydrogenation provokes dramatic changes in the (electronic) structure of1as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.more » « less
An official website of the United States government
